Eccsmith: Turning the Blacksmith
Rowhammer Fuzzer Into an ECC
Validator

Patricia Norton

Student ID: 2177660
MSci Computer Science F'T
60 Credits

Supervisor: David Oswald
Word Count: 6,556

Abstract

Error Correction Code memory (ECC) is a widespread hardware feature which is
capable of detecting and correcting bit flip errors in RAM, and is relied upon for
the stability of important systems. However, there is currently no easy and free
method of checking if ECC is even functioning correctly on a system which claims
to implement it. This report proposes a solution to this problem in the form of
Eccsmith, a program which manually injects bit flip errors into RAM using the
fault injection exploit Rowhammer, then detects whether or not these errors are
corrected by ECC. Eccsmith is a modification of the pre-existing Rowhammer fuzzer
Blacksmith, making it capable of functioning on DDR4 RAM which implements
Target Row Refresh (TRR). In addition, Eccsmith makes several improvements to
the ease of use of Blacksmith’s Rowhammer fuzzing, bringing it closer to the goal of
being easily usable by anyone seeking to validate the functionality of ECC on their
system.

Git Repository

https://github.com/patricia-9000/eccsmith

https://github.com/patricia-9000/eccsmith

Acknowledgements

I would like to thank the authors and developers of Blacksmith - Patrick Jattke,
Victor van der Veen, Pietro Frigo, Stijn Gunter, and Kaveh Razavi - and the
developers of its JSON config branch, Jeremy Boy and Luca Wilke. I would also
like to thank my supervisor David Oswald for his guidance with this project, and
Jacqui Henes for providing the initial idea for the project.

i

Contents

[3 Requirements|

[3.2 System Requirements|.o L.
[3.3 Software Requirements|00

[4 Legal and Professional Issues|
[4.1 Using an Exploit for Good|
[4.2 Adapting Others” Work|.

[Methodology|
b1 BECC Validation| o
[>.2 Simplified Configuration|

6 Results and Evaluationl
[6.1 Proof of Concept|
[6.2 Implementing ECC Validation|
[6.3 Implementing Simplified Configuration|
6.4 Evaluationl.

[7__Conclusion|
[T Summary|
[7.2 Suggestions for Future Workl00

8 References|

(A Appendices|

il

11
11
12
14
15

17
17
17

18

20

Introduction

1.1 ECC

Bit flip errors in RAM can be caused by a variety of random environmental factors,
such as electromagnetic interference and cosmic rays. Though unlikely to occur,
these errors are responsible for a proportion of all system crashes, which can be major
catastrophes when they happen on servers or other important systems. 1] Therefore
in order to prevent these errors, such systems often implement error correction code
memory, or ECC. This is a mechanism which detects and corrects bit flips, using a
type of checksum referred to as a correction code. Using ECC, any data which gets
stored in RAM has a correction code generated from it, which is then also stored
separately in RAM. Then when that data gets accessed later, its correction code is
also read out, which is then compared to a newly-generated correction code from
the read data, to check if any bit flip errors are present in it. This mechanism is
capable of correcting single-bit errors and resuming execution of the relevant process
as normal, by using the correction code to deduce which bit was flipped. But in the
much more unlikely event that a multiple-bit error occurs, it is usually not possible
to know which bits were flipped, so the error may not be able to be corrected.
The availability of ECC is hardware-dependent, as both the RAM modules and the
motherboard must be compatible with this mechanism.|2]

Manufacturers of systems with ECC implemented usually check that it is work-
ing properly using a feature built in to the motherboard called ECC injection. This
feature allows for the manual insertion of memory errors and the testing of ECC’s
response to these errors. But this feature is usually permanently disabled by man-
ufacturers once they have run their own tests.|2] This means that in most cases,
end-users have no easy way of verifying that ECC is actually functioning on their
systems. In other words, they will only know if it is working or not if a bit flip error
occurs naturally on their system, at which point it is already too late.

The main existing solution to this problem is the ECC Tester sold by PassMark
Software. [3] This is a hardware device designed to be inserted into one of the DIMM
slots of a motherboard, and then for an ECC-enabled RAM module to be inserted
into the device itself. There is a button on the device which causes it to inject bit
flip errors into the data read from the inserted RAM module when pressed. This
allows the user to observe their system’s response to these errors in a controlled
environment, letting them see if ECC is working or not. The downside of the ECC
Tester is that it costs $260, making it less accessible for individuals not operating
with the budget of a large company.

Eccsmith: Turning the Blacksmith Rowhammer Fuzzer Into an ECC Validator

Beyond this option, the only other existing methods of validating ECC which
some people resort to involve tampering with the hardware of the system itself, in
order to cause hardware faults which produce bit flip errors.[4] Individuals seeking
to validate their ECC may find this to be prohibitively difficult or risky. Therefore,
there are issues with every currently existing method of validating ECC, so there is
a need for an easy and free alternative.

1.2 Rowhammer

The transistors which make up RAM can leak the charge which they store, resulting
in bit flip errors in the bits which they represent. Leaking happens naturally over
time to the transistors in RAM, because they are so small and densely-packed. But
a system’s OS prevents this by periodically refreshing rows of RAM so that they are
never left long enough to leak. This is done by storing the same value back into a
transistor that it is already holding. And this is done in rows because bits in RAM
can only ever be accessed in whole rows at a time.

Rowhammer is a software-based fault injection exploit which is capable of man-
ually injecting bit flip errors into memory.[5] Accessing a row of RAM makes the
surrounding rows slightly more likely to leak, because it disturbs the charge in their
transistors. So if an “aggressor” row of RAM is repeatedly accessed enough - re-
ferred to as “hammering” - it will make the “victim” rows surrounding it leak faster
than the OS refreshes them, resulting in random bit flips within those rows.

1.3 Contributions

This report presents a novel and practical use case for Rowhammer, as the means
of triggering ECC in order to prove that it is functioning correctly. A practical
application of this use case is also presented in the form of Eccsmith, which is a
modification of the existing Rowhammer software Blacksmith.|6] Eccsmith builds
upon Blacksmith by implementing the ability for it to detect and report on the
ECC corrections it causes, by communicating with the hardware error event log-
ger Rasdaemon.[7] It also builds upon Blacksmith further by automating a larger
proportion of the process of configuring it to the host system. With these changes,
Eccsmith attempts to solve the problem of validating ECC easily and for free.

Introduction 2 Patricia Norton

Literature Review

2.1 Rasdaemon

When ECC corrects a bit flip error, details of the event are written to the OS’s event
tracking log. On Ubuntu and Debian, this is the file /var/log/syslog. Other hard-
ware error events are also recorded in the same manner. In order to more easily keep
track of these events, the Rasdaemon package exists on these Linux distributions.
Rasdaemon reads from the event tracking log, and stores details of hardware error
events in a database located at /var/lib/rasdaemon/ras-mc_event.db.|7] Utilis-
ing Rasdaemon is a simple choice for how the ECC validator produced in this project
should detect ECC corrections.

2.2 TRR

In response to Rowhammer’s discovery in 2014, the standard for DDR4 RAM
was amended to include support for a countermeasure called Target Row Refresh
(TRR).[8] This is a feature of RAM where a row is refreshed if its surrounding rows
are accessed more than a certain number of times in a brief period, thus prevent-
ing that target row from leaking. This makes it impossible to perform the classic
approach to Rowhammer on modern DDR4 RAM, which is widespread today.

In response to the adoption of TRR, new methods of performing Rowhammer
were discovered that circumvent it - namely TRRespass in 2020,[9] and then Black-
smith in 2022.[6] TRRespass performs “many-sided hammering”, where many ag-
gressor rows surrounding a single victim row are hammered in varying ways, such
that no single aggressor row is accessed enough times to trigger TRR. Then Black-
smith improved upon this technique with the introduction of “non-uniform” many-
sided hammering, which makes the exploit effective on more DDR4 RAM modules.
These are referred to as Rowhammer “fuzzers”, borrowing the terminology form
software fuzzing, because they generate many hammering patterns at random and
try them until one is found to be effective.

There are certain difficulties inherent to creating useful software which utilises
an exploit which has been widely known about for a decade. The ubiquity of TRR
means that this project will be incapable of achieving its goals if a naive approach to
Rowhammer is attempted. The ECC validator which will be created should be able
to function on modern RAM, therefore a Rowhammer approach which is capable of
circumventing TRR must be used. However, these approaches are too complex to

recreate in the time allowed for this project, so an existing implementation must be
reused. Therefore, the ECC validator will be built off Blacksmith.

Eccsmith: Turning the Blacksmith Rowhammer Fuzzer Into an ECC Validator

2.3 DRAMA

The many-sided hammering techniques employed by both TRRespass and Black-
smith involve accessing several rows of RAM which are in close physical proximity
to each other. This is not something that can be achieved by normal means, because
memory addresses as they are understood by programs are different to their actual
corresponding physical locations inside RAM. A location in RAM is defined by six
attributes:

1. The RAM channel (the bus from which a RAM module is accessed)
. The RAM module accessed by that channel

. The rank on that module (which of the two sides it is stored on)

2
3
4. The bank on that rank (the physical chip storing the data)
5. The row in that bank

6

. The position in that row

The function which maps from addresses to physical locations is determined by
the system’s CPU microarchitecture, which intentionally obfuscates the relationship
between them by making it so that locations which are adjacent in address space
are not necessarily physically adjacent in RAM.

TRRespass and Blacksmith were made possible by the research done as part of
the memory mapping reverse-engineering tool DRAMA.[10] DRAMA allows for the
obtaining of previously undocumented memory address mappings via side channel
analysis on memory access times. These access time discrepancies arise from the
fact that when a single memory location is accessed, the whole row of RAM where
it is physically stored has to be read at once. When this happens, the contents
of the row are cached in the row buffer of the bank which that row belongs to.
So when two memory locations are repeatedly accessed in alteration - while using
cflush each time to prevent CPU caching - it will take longer to access them if
they both belong to the same bank but to different rows within that bank, because
a new row has to be read each time, rather than being read from that bank’s row
buffer. And conversely, if the access times are fast, then this means the two addresses
likely belong to different banks altogether, since both of their rows will be read from
their respective banks’ row buffers on each access. After identifying whether enough
address pairs belong to the same or different banks, the overall memory mapping
function can be reconstructed.

While Blacksmith effectively uses results obtained from DRAMA to target RAM
rows in close physical proximity to each other, the software released as part of this
research is hard-coded with memory mappings for Intel Coffee Lake CPUs.|11][12]
Therefore it is not readily portable to systems with other CPU varieties. The so-
lution to this, created by separate researchers, is for the memory mapping to be
provided to Blacksmith at runtime via a configuration file formatted in JSON. Each
user of Blacksmith can then create their own configuration file using results from
DRAMA. This version of the program currently exists on a separate GitHub branch,
which will henceforth be referred to as the “JSON config branch”.[13] In order for
the ECC validator created in this project to be functional on as many systems as
possible, it should be built off this particular branch of Blacksmith.

Literature Review 4 Patricia Norton

Requirements

3.1 Problem Statement

Given the research outlined in the prior chapters, the conclusion reached on how to
achieve the goal of this project can be described as follows:

A new fork of the JSON config branch of Blacksmith will be created, and named
“Eccsmith”. In this fork, monitoring of the Rasdaemon database will be imple-
mented, such that a user is able to cause bit flip errors and see results of whether
or not the ECC mechanism on their system was able to correct these errors. Fur-
thermore, this whole process should be made as simple as possible, so that it is an
easier way of validating ECC than the currently existing methods of doing so.

3.2 System Requirements

There is a set of requirements which the end user’s system must fulfill in order for
them to be able to use Eccsmith. Firstly, there are the pre-existing system require-
ments of Blacksmith. The only packages which it requires are g+-+ and cmake,
because the program is built with a fully comprehensive cmake setup which auto-
matically installs its various required dependencies at build time. The developers
also recommend Ubuntu version 18.04 LTS with kernel version 4.15 to be used, so
Ubuntu will be the target platform of the software.[11]

Beyond these requirements, the main system modification which Blacksmith re-
quires users to make is that 1 gigabyte hugepages must be enabled. Given that
Blacksmith performs the many-sided hammering technique at various random mem-
ory addresses, it requires the availability of a large, contiguous region of memory
for it to operate within. But the default memory page size available in Linux is
only 4 kilobytes, which is too small for this. So before using Blacksmith, users are
required to enable at least a single 1 gigabyte hugepage to be available on their
system. Blacksmith’s developers provide instructions on how to do this.|14]

Then there are the additional requirements demanded by the changes made in
Eccsmith. The main addition is that Rasdaemon must be installed by the user.
While Rasdaemon is the de facto hardware error event logger for Ubuntu and Debian,
it does not come pre-installed in either distribution, so end users will be required
to manually install its apt package. Additionally, in order for Eccsmith to be able
to communicate with Rasdaemon’s database, it needs to be built with the SQLite3
C++ library, which needs to be both included in the cmake build process and
installed by the user.

Eccsmith: Turning the Blacksmith Rowhammer Fuzzer Into an ECC Validator

3.3 Software Requirements

The experience of using Eccsmith from a user’s perspective should be roughly as
follows:

After building the program from source and configuring their system according
to the System Requirements section above - presumably by following instructions
from the repository’s README.md file - the user will simply be able to run the main
Eccsmith executable, without providing any command line arguments or performing
any further work. The program will then undergo all of the necessary remaining
configuration itself, to the point that it finds the correct reverse-engineered memory
mapping for the host system. It will then enter the fuzzing stage of its operation,
which may last a long time. The user can leave the program running in this time
while they do something else. During this stage, Eccsmith will perform several
different many-sided hammering patterns, and after each one it will both scan for
caused bit flips and for logged ECC corrections. If either of these occur, details of
them will be logged and displayed clearly with accompanying timestamps, so that
the user can check the program’s output occasionally and observe its progress. Once
Eccsmith has gathered enough information to form a verdict on whether or not ECC
is functioning properly on the host system, it will cease operation and display its
findings.

Requirements 6 Patricia Norton

Legal and Professional Issues

4.1 Using an Exploit for Good

The central conceit of Eccsmith is that in an attempt to ensure the stability of
computer systems, the software must first leverage a fault injection exploit which
has historically been used to undermine the security of computer systems.[15] While
it is not illegal to simply use a security exploit on your own computer if you do not
use it to access or modify data that does not belong to you,[16] this project does
involve making advancements in the ease of use of a security exploit, which currently
has no definitive countermeasure - not even ECC.[17]

In this project’s defense, given the potential for Rowhammer’s ability to do
harm, it is a near certainty that there have already been improvements made in
its effectiveness and usability by those with malicious intent, but that they simply
have not made this knowledge public so that their methods can remain unimpeded.
Therefore if the Eccsmith project is pursued, only those who seek to use it for its
intended purpose will stand to gain anything from it.

4.2 Adapting Others’ Work

Given that the software which will result from this project will be a modification
of an existing piece of software, it is important to clarify exactly what code is a
contribution of this project, and what code existed already. To this end, the Results
chapter of this report makes this distinction clear in all cases. Furthermore, all
changes can be viewed in exact detail in the commit history of Eccsmith’s GitHub
repository.

Beyond this point, there is the issue of having the permission to produce a
modified version of the code in the first place. To clarify, the Blacksmith software
was released under the MIT License, the terms of which explicitly grant permission
to “use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the software”.[18] Additionally, the developers of Blacksmith and its JSON config
branch were contacted and informed of this project, and they indicated that they
were happy with their code being adapted.

Methodology

5.1 ECC Validation

Blacksmith has three different modes which it can be run in, that can be selected
via command-line arguments:

1. Fuzzy Hammerer: Blacksmith’s non-uniform, many-sided Rowhammer fuzzer.

2. Replaying Hammerer: Takes an input file containing information about
a previously executed Fuzzy Hammerer run, and replays the most effective
hammering patterns found, in order to test their reproducability.

3. Traditional Hammerer: A classic implementation of Rowhammer.

Since circumventing TRR in order to function correctly on modern systems is the
reason for using Blacksmith in this project, it would be unnecessary to include the
Traditional Hammerer in Eccsmith, so it could simply be removed when adapting
the software.

As for the Replaying Hammerer, this mode has the potential to cause bit flips
much more frequently than Fuzzy Hammerer, since it only uses hammering patterns
that have already been found to be effective. While using it requires doing a Fuzzy
Hammerer run first, it would be possible for Fuzzy Hammerer to be run up until
an effective hammering pattern is found, at which point program execution could
shift over to Replaying Hammerer instead, which would replay the effective pattern.
This technique would eventually result in a high frequency of bit flips for ECC to
correct, which would be very effective at stress testing it.

For the sake of simplicity however, Eccsmith will only use Fuzzy Hammerer, and
will stop running after some number of bit flips have either been corrected by ECC
or have gone uncorrected. Eccsmith does not necessarily need to be a stress tester
- it simply needs to verify that ECC is functioning. So Replaying Hammerer could
also be removed when adapting Blacksmith.

At the centre of Fuzzy Hammerer’'s main loop are two key instructions: do
hammering, and check for bit flips. Eccsmith will add a third, which is to check
for bit flips corrected by ECC. It will do this by querying Rasdaemon’s database to
get an updated count of the number of ECC corrections on record. If this number
has increased since the last check, it means that the hammering performed in this
iteration of the loop has caused bit flips which ECC corrected. The number of new
corrections will be added to a running count of all corrections from this run, alongside
the running count of uncorrected bit flips which Blacksmith already maintains.

Eccsmith: Turning the Blacksmith Rowhammer Fuzzer Into an ECC Validator

Blacksmith outputs lots of technical details to the console about the fuzzing
run during execution, but it also offers the option to log this to a file instead. For
the sake of simplicity, Eccsmith will use this functionality to log these details to a
separate file by default, but will still print alerts to the terminal when corrected or
uncorrected bit flips are detected, so that the user can easily see the run’s progress.
Then when either the corrected or uncorrected count reaches a certain threshold,
Eccsmith will halt and display a final verdict on its confidence as to whether or
not ECC is functioning properly. If it detected only corrected bit flips and no
uncorrected bit flips, it will convey confidence that ECC is working, but any results
worse than this will result in a negative verdict.

5.2 Simplified Configuration

The main executable in the JSON config branch of Blacksmith needs to be provided
with an argument defining the path to a valid config file in order for it to run. These
config files contain various values that mostly describe attributes of the host system,
including its memory mapping. The repository contains some pre-made config files
for some systems. The user is expected to create their own config file in order to use
Blacksmith. They can do this by using DRAMA to reverse-engineer the memory
mapping of their system, or by copying one from a pre-made config file if it matches
their system.|13]
Two other important values in these config files are:

e threshold: The number of clock cycles which differentiates between a memory
row buffer hit and a memory row buffer miss, i.e. A memory access featuring
a row buffer hit will take a smaller number of cycles than threshold, and
one featuring a row buffer miss will take a greater number of cycles than
threshold.

e acts_per_trefi: The number of times a row of memory can be accessed
within a short time period before TRR refreshes the surrounding rows. This
value being correct for the host system is instrumental to Blacksmith’s ability
to circumvent TRR.

The repository also contains a number of helper programs intended to assist
users in the creation of config files. The following is a short description of each of
these helper programs:

e determineConflictThreshold and visualize_access_timings.py are in-
tended to be used together to determine a value for threshold in the config
file. The first program records the necessary timing measurements, and then
the Python script plots them on a graph, which the user is expected to visually
inspect in order to determine the threshold value.

e determineActsPerRef and visualize_acts_per_ref.py are intended to be
used together to determine a value for acts_per_trefi in the config file.
Again, the first program records the necessary timing measurements, and then
the Python script plots them on a graph. But this script also actually calcu-
lates and outputs the resulting value for acts_per_trefi itself.

Methodology 9 Patricia Norton

Eccsmith: Turning the Blacksmith Rowhammer Fuzzer Into an ECC Validator

e checkAddrFunction can be used on a config file to test various row access
timings and see if they conflict with the config’s threshold value, to see if its
memory mapping is correct.

In the development of Eccsmith, the functionalities of these helper programs
could all be incorporated into the main Eccsmith executable, making threshold
and acts_per_trefi be determined and the memory mapping be checked auto-
matically at runtime, rather than expecting the user to figure out how to use these
various different auxiliary programs. Furthermore, the main branch of Blacksmith
without the features of the JSON config branch already contains code for calculating
an equivalent to acts_per_trefi internally, which is only used when a config file
contains an acts_per_trefi value of 0, so this code could simply be used instead
of the determineActsPerRef code.

These changes would mean that threshold and acts_per_trefi could be re-
moved from the format of config files. The impact of this is that Eccsmith would
take slightly longer to start running, because it would have to calculate these values
again every time, but it would make the software significantly easier to operate.

Of the remaining values which are required to be in config files, some more can
be removed to simplify things further:

e max_rows and hammer_rounds: These values are only used in the Traditional
Hammerer mode, so they would no longer be necessary.

e drama_rounds: This value is used as a parameter in some row access timing
measurements. It simply determines the level of precision to use, so it could
be replaced with some default value.

Aside from the name value which contains a user-defined name for the config file,
the only values remaining in the config files given the removal of those above would
be the following:

e channels, dimms, ranks, and total_banks: These are aspects of the host
system’s memory hardware. The user is expected to inspect their system’s
memory hardware in order to fill in these values.

e row_bits, col_bits, and bank_bits: These values comprise a memory map-
ping function. The user is expected to use DRAMA to reverse-engineer their
system’s memory mapping function in order to fill in these values.

The factors which determine the memory mapping function of a system are its
CPU microarchitecture and its memory hardware (which will together henceforth be
referred to as “memory setup”). Therefore, if the above values are the only values
remaining in the config file format which Eccsmith will use, then its repository could
simply be populated with config files for every common memory setup, meaning users
would never have to create or edit config files themselves. Furthermore, Eccsmith
could automatically choose the correct config file to use at runtime, by checking
attributes of the host system in order to determine its memory setup. As a result,
this would entirely eliminate the lengthy configuration process which Blacksmith
normally requires, thereby making Eccsmith a much more usable and appealing
piece of software.

Methodology 10 Patricia Norton

Results and Evaluation

6.1 Proof of Concept

Before beginning to modify Blacksmith, the software was tested first in order to
verify that the premise of this project would work. This testing began by initially
using Blacksmith on a laptop which does not implement ECC, with the aim of
simply causing bit flips, so that it could be used as a control against a system which
does implement ECC. This laptop will henceforth be referred to as System A, and
its full details can be found in appendix [A.1]

System A has an Intel Core i5-8265U CPU, which is an Intel Whiskey Lake
processor, and therefore uses the same microarchitecture as Intel’s Coffee Lake pro-
cessors.|19] All three of the pre-existing config files included in the JSON config
branch’s repository were also created for systems with this microarchitecture, but
none of them matched System A’s memory hardware, so a new config file had to
be created. This required the use of DRAMA to determine the memory mapping
function of System A. This was initially very challenging, because DRAMA does
not output complete memory mapping functions ready to be used in Blacksmith’s
config files. Instead, it reports individual memory address bit positions which it
deems likely to be involved in the mapping function, without any indication of how
these are incorporated into the function. At this stage, one of the developers of the
JSON config branch of Blacksmith was contacted, and he gave assistance on how
to use DRAMA effectively for this purpose. Specifically, he offered the observation
that the values of row_bits and col_bits in every memory mapping function seem
to always be very similar. This assistance allowed for the construction of a memory
mapping function which checkAddrFunction verified to be correct on System A. Of
note is the fact that the resulting memory mapping function was identical to that of
one of the pre-existing config files, despite the fact that they each specified different
memory hardware. This memory mapping function can be found in appendix

However, Blacksmith was ultimately unable to produce any bit flips on Sys-
tem A, even after being run for several hours and using various different values for
acts_per_trefi produced by the helper programs. It is unknown why this hap-
pened, but it is hypothesised that System A is simply not susceptible to Rowhammer,
possibly because it uses a SODIMM as its memory rather than a regular DIMM.
The decision was eventually made to move on to experiments with a system that
does implement ECC.

To this end, a server implementing ECC was assembled. This server will hence-
forth be referred to as System B, and its full details can be found in appendix
A1 System B has an Intel Xeon E3-1220 v6 CPU, which is an Intel Kaby Lake

11

Eccsmith: Turning the Blacksmith Rowhammer Fuzzer Into an ECC Validator

processor, and therefore also uses the same microarchitecture as Intel’s Coffee Lake
processors. [20] By using checkAddrFunction, the same memory mapping function
which worked on System A was found to be correct for System B as well, even
though their memory hardware differs. This mapping function was implemented
into a new config file for System B as a result.

The next stage would have been to test Blacksmith on System B with ECC
temporarily disabled, but it was discovered that System B’s BIOS didn’t include
the option to disable ECC. This stage was skipped as a result, and Blacksmith was
instead run with ECC enabled, while Rasdaemon was running and monitoring for
ECC corrections. To make this process easier, a small script was created which
read from the logs of both programs and wrote the relevant details to the same
terminal window, including details of any ECC corrections. After leaving this setup
for several hours, Rasdaemon was found to have reported many corrected bit flips
during the time frame. This verified the fact that it would be possible to validate
ECC functionality using Rowhammer, meaning the modification of Blacksmith could
begin.

:~% sudo ras-mc-ctl --summary

Memory controller events summary:
Corrected on DIMM Label(s): 'mc#Ocsrow#@channel#l' location: ©0:0:1:-1 errors: 16100

No PCIe AER errors.

No Extlog errors.

No MCE errors.

Figure 6.1: Rasdaemon showing that 16,100 ECC corrections had been caused on
System B by the end of the project

6.2 Implementing ECC Validation

After Blacksmith was forked to create the Eccsmith repository, ECC validation was
implemented using the newly created class RasWatcher. This class handles all com-
munication with Rasdaemon’s database, and encapsulates the number of corrections
counted during the run. In addition, the Fuzzy Hammerer mode of operation was
modified such that in the centre of its main loop, it calls a RasWatcher method which
retrieves an updated count of how many ECC corrections have occurred. This num-
ber of new corrections then gets implemented into Fuzzy Hammerer’s evaluation of
which hammering patterns are effective, alongside the existing count of uncorrected
bit flips which is already used in this way. Then the other modes of operation - Re-
playing Hammerer and Traditional Hammerer - were disabled and removed, along
with their corresponding program arguments.

The logging system was also reworked, such that only details about the start of
the run, corrected bit flips, uncorrected bit flips, and the end of the run are printed,
and all other technical details are recorded in a log file. After the chosen run time
limit elapses, or after three effective hammering patterns have been found, Eccsmith
ends the fuzzing run and displays a verdict on whether or not ECC is functioning
correctly.

Results and Evaluation 12 Patricia Norton

Eccsmith: Turning the Blacksmith Rowhammer Fuzzer Into an ECC Validator

Eccsmith was found to regularly take roughly an hour to produce any correc-
tions on System B, prompting its default runtime to be increased to 3 hours, from
Blacksmith’s default of 2 minutes. It was also found to almost exclusively report
exactly 39 corrections at a time. Upon manual inspection of Rasdaemon’s database,
this figure was found to be consistent with its records. However, after further in-
vestigation, Rasdaemon was found to not be recording corrections accurately. By
manually inspecting System B’s event tracking log using dmesg while running Ecc-
smith, it was found that when ECC corrections were reported by dmesg, they were
not immediately reported by Rasdaemon, and by extension Eccsmith. Rasdaemon
only appeared to be reporting these errors once 39 had been logged in dmesg, at
which point they would all be logged in Rasdaemon at once.

This bug in Rasdaemon was found to have previously been reported by various
other people.[21] The bug was found to actually have been caused by a change to
the Linux kernel, which has already been fixed. The breaking change was made in
kernel version 6.1, and it was fixed in version 6.2.[22] For the bug to be completely
fixed however, Rasdaemon also needed to be amended, which was done in version
0.8.0 of Rasdaemon.[23] System B was using Ubuntu version 22.04 LTS, which uses
kernel version 6.5, so the bug was fixed within its kernel. However, the highest
version of Rasdaemon available on this Ubuntu version is 0.6.7, meaning it was not
fixed within Rasdaemon itself, so it was not possible to prevent the bug.

Unfortunately, there was not enough time in the project to solve this issue.
The next step needed to investigate it further would have been to install an earlier
version of Ubuntu on System B which uses a kernel version from before the bug was
introduced. The only impact of this issue is that Eccsmith regularly took roughly
an hour to visibly produce any corrections, because it needed to produce up to 39
first before any could be reported. This may not be the case on other platforms.

% sudo ./eccsmith -c ../config/test-config.json

Start time: 15:29

Run time limit: 3 hours

Config name: test-config

Hostname: eccmachine

Commit SHA: 26a552b2@a6fb452dal2c1762c69be1040134349

Figure 6.2: A run of Eccsmith on System B after implementing ECC validation,
featuring the 39 corrections bug

Results and Evaluation 13 Patricia Norton

Eccsmith: Turning the Blacksmith Rowhammer Fuzzer Into an ECC Validator

6.3 Implementing Simplified Configuration

The format of valid config files was altered by removing all of the requirements for
the threshold, acts_per_trefi, max_rows, hammer_rounds, and drama_rounds
fields from the existing code. The helper programs were also removed from the
repository. In exchange, in order to make Eccsmith determine acts_per_trefi on
its own, the code was modified to make it default to the existing built-in solution
for finding this value, in the DramAnalyser class.

However, there were some issues with this code. Firstly, it assumed a threshold
value of 1000 in order for it to tell when a row miss occurs and TRR refreshes the
victim rows. This was fixed by making the code first determine an accurate value
of threshold instead. This was implemented by importing the pre-existing code
from determineConflictThreshold to take the necessary measurements, and then
creating a new part which finds the averages of all the row hit and row miss timings,
and returns the midpoint between these two values. This circumvents the step where
visualize_access_timings.py would formerly require the user to visually inspect
a plot of the data to determine this value.

Secondly, the code had a bug which made it never finish. This is presumably
why the determineActsPerRef and visualize_acts_per_ref.py helper programs
were created in the first place. One option at this point would have been to im-
port the code from these helper programs into the DramAnalyser class too, and to
use this as a replacement. However, upon inspection of both methods, the code
within the DramAnalyser class was determined to be more sophisticated, and likely
to produce more accurate results if it could be fixed. This is because it iteratively
measures the number of row activations needed to trigger TRR, until the standard
deviation of all measurements drops below 3, at which point it returns the mean
of all measurements. Whereas the combined solution of determineActsPerRef
and visualize_acts_per_ref .py simply takes 1000 measurements and finds their
mean, with no accounting for outliers. Therefore the decision was made to fix the
existing code in the DramAnalyser class.

The existing code was getting stuck because outliers in its measurements caused
the standard deviation to never drop below 3 regardless of how many measurements
were taken. This was fixed by introducing a condition which abandoned all mea-
surements and tried again if the standard deviation did not drop below 3 after 2000
measurements. In addition, to reduce the likelihood of outliers in the next attempt,
the threshold value would be raised by 10 on each retry. Then if enough retries
were done that threshold was raised to be 200 greater than its original value, it
would be reset back to its original value in the next retry. Finally, measurement
would also be restarted if acts_per_trefi was found to be less than or equal to 5,
to prevent the case where so many outliers occur that the standard deviation does
drop below 3 and acts_per_trefi is erroneously found to be a very small value.

With all of these changes implemented, the DramAnalyser class no longer gets
stuck when run on System B, and it consistently produces effective values for
acts_per_trefi. As a result, Eccsmith is able to automatically determine all pa-
rameters at runtime. In addition, the pre-existing code from checkAddrFunction
was also integrated into the DramAnalyser class, such that the selected config file’s
mapping function is checked at the start of a run, using the threshold value which
is already determined earlier.

Results and Evaluation 14 Patricia Norton

Eccsmith: Turning the Blacksmith Rowhammer Fuzzer Into an ECC Validator

However, there was not enough time available in the project to implement the
automatic selection of the correct config file. As a result, Eccsmith requires the user
to manually select the correct pre-made config file from the repository, if one which
is correct for their system already exists. Furthermore, there was not enough time
to create any more pre-made config files for Eccsmith users to choose from, leaving
only a selection covering four very similar memory setups. These four config files
only actually use two different memory mapping functions between them, both of
which can be found in appendix [A.2] Both functions had already been discovered
as part of Blacksmith’s JSON config branch prior to this project.

CPU Microarchitecture | Channels | DIMMs | Ranks | Banks
1 1 1 8
1 1 2 8
Intel Coffee Lake 1 1 1 16
1 1 2 32

Table 6.1: All memory setups for which there are pre-made config files in
Eccsmith’s repository

$ sudo ./eccsmith -c ../config/coffee-lake-1-1-1-8.json

[sudo] password for patricia:

Start time: 18:24

Run time limit: 3 hours

Config name: coffee-lake-1-1-1-8

Hostname: eccmachine

Commit SHA: 22300f8bb4a61d38322364e3c642c1b245ac45el

Figure 6.3: The beginning of a run of Eccsmith after implementing the changes to
the program configuration

6.4 Evaluation

Eccsmith partially meets the criteria laid out by the Requirements chapter of this
report. It is a successful implementation of the novel and practical use case for
Rowhammer initially stated in the Introduction chapter - as the means of triggering
ECC in order to prove that it is functioning correctly.

Although, it is arguably not an easy method of validating ECC. In particular,
Eccsmith is not capable of fully configuring itself to the host system automatically.
The user is still required to manually select a config file from its repository, if a
correct one does already exist. Even selecting the correct pre-existing config file is
challenging, because a user is required to find out their system’s CPU model, then
figure out which microarchitecture it uses, and then to understand their system’s
memory hardware, in order for them to know which one to choose. In addition, the
repository was not populated with a wide variety of config files to account for all
common memory configurations, meaning the user may be required to create one

Results and Evaluation 15 Patricia Norton

Eccsmith: Turning the Blacksmith Rowhammer Fuzzer Into an ECC Validator

themselves using DRAMA if no suitable config file already exists. Finally, the error
involving ECC corrections only being reported in groups of 39 would slow down
Eccsmith’s ability to reach a verdict on ECC’s functionality, if it were to also occur
on a prospective user’s system. These factors reduce the likelihood that anyone
seeking to validate the functionality of ECC on their system would realistically use
Eccsmith for this purpose, because it would simply be too difficult.

However, if the automated selection of config files could be implemented, it is
possible that Eccsmith may slowly be widely adopted, as users start to populate its
repository with config files which they make themselves. Therefore Eccsmith has
come reasonably close to meeting the criteria laid out by the Requirements chapter,
given the time allowed for this project.

Results and Evaluation 16 Patricia Norton

Conclusion

7.1 Summary

This report has demonstrated a novel and practical use case for Rowhammer, as the
means of triggering ECC in order to prove that it is functioning correctly. This use
case has then been applied in practice, by modifying the Blacksmith Rowhammer
fuzzer to convert it into an ECC validator. The ultimate goal of this project was for
this ECC validator to be easy to use. The project did not fully achieve this goal,
but it came reasonably close to doing so, and it still may be achieved with future
work.

7.2 Suggestions for Future Work

The main priority of any future work on Eccsmith should be to confirm the cause
of the error involving ECC corrections only being reported in groups of 39, by
testing it on more systems using differing versions of Ubuntu, the Linux kernel, and
Rasdaemon. Providing a means of either fixing or avoiding this would then greatly
improve Eccsmith’s efficiency.

Beyond this, the next priority should be to implement the automated selection
of config files, which is likely to be relatively easy. Once this has been achieved,
Eccsmith needs to be tested on more systems to verify other areas of its functionality.
In particular, it is important to test the improved threshold and acts_per_trefi
measurement process on other systems.

Additionally, there is a need for Eccsmith’s repository to be populated with more
config files in order for it to be compatible with other systems. This process could
be made easier by improvements to DRAMA, with the aim of making it able to
automatically generate full memory mapping functions, rather than just suggesting
which bits may be involved in the function, which requires trial-and-error on the
user’s behalf. It would also be beneficial to begin utilising the relatively recent
research into the reverse-engineering of AMD’s processors, given that DRAMA is
only capable of reverse-engineering Intel processors.|[24]

17

References

[1] James F. Ziegler et al. “IBM Experiments in Soft Fails in Computer Electron-
ics”. In: IBM Journal of Research and Development. Vol. 40. 1996, pp. 3—18.
URL: https://ieeexplore.ieee.org/document/5389432.

[2] PassMark Software. Memtest86 - ECC Technical Details. 2021. URL: https:
//www.memtest86.com/ecc.htm.

[3] PassMark Software. ECC' Tester. 2023. URL: https://www .passmark . com/
products/ecc-tester/index.php.

[4] Inducing ECC Errors the Hardware Way. 2021. URL: https://forum.levelltachs.
com/t/inducing-ecc-errors-hardware-way.

[5] Yoongu Kim et al. “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors”. In: Proceedings of the
ACM/IEEE j1st International Symposium on Computer Architecture (ISCA).
2014, pp. 361-372. URL: https://ieeexplore.ieee.org/document/6853210.

[6] Patrick Jattke et al. “Blacksmith: Scalable Rowhammering in the Frequency
Domain”. In: Proceedings of the IEEE Symposium on Security and Privacy
(SP). 2022, pp. 716-734. URL: https://ieeexplore. ieee.org/document/
9833772.

[7] Mauro Chehab et al. Rasdaemon. 2013. URL: https://github.com/mchehab/
rasdaemon.

[8] Yichen Jiang et al. “TRRScope: Understanding Target Row Refresh Mecha-
nism for Modern DDR Protection”. In: Proceedings of the IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). 2021, pp. 239
247. URL: https://ieeexplore.ieee.org/document/9702274.

[9] Pietro Frigo et al. “TRRespass: Exploiting the Many Sides of Target Row
Refresh”. In: Proceedings of the IEEE Symposium on Security and Privacy
(SP). 2020, pp. 747-762. URL: https://ieeexplore.ieee.org/document/
9152631.

[10] Peter Pessl et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU
Attacks”. In: Proceedings of the 25th USENIX Security Symposium. 2016,
pp. 565-581. URL: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/pessl.

[11] Patrick Jattke et al. Blacksmith Rowhammer Fuzzer. 2021. URL: https://
github.com/comsec-group/blacksmith.

18

https://ieeexplore.ieee.org/document/5389432
https://www.memtest86.com/ecc.htm
https://www.memtest86.com/ecc.htm
https://www.passmark.com/products/ecc-tester/index.php
https://www.passmark.com/products/ecc-tester/index.php
https://forum.level1techs.com/t/inducing-ecc-errors-hardware-way
https://forum.level1techs.com/t/inducing-ecc-errors-hardware-way
https://ieeexplore.ieee.org/document/6853210
https://ieeexplore.ieee.org/document/9833772
https://ieeexplore.ieee.org/document/9833772
https://github.com/mchehab/rasdaemon
https://github.com/mchehab/rasdaemon
https://ieeexplore.ieee.org/document/9702274
https://ieeexplore.ieee.org/document/9152631
https://ieeexplore.ieee.org/document/9152631
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://github.com/comsec-group/blacksmith
https://github.com/comsec-group/blacksmith

Eccsmith: Turning the Blacksmith Rowhammer Fuzzer Into an ECC Validator

[12]

[13]
[14]

[15]

[16]

[17]

[21]

[22]

[23]

[24]

Patrick Jattke. Blacksmith on Non-Coffee Lake CPUs. 2021. URL: https :
// github . com/ comsec - group /blacksmith/issues /4 # issuecomment —
972629985.

Jeremy Boy and Luca Wilke. Blacksmith JSON Config Branch. 2023. URL:
https://github.com/UzL-ITS/blacksmith/tree/jsonconfig.

Patrick Jattke. Instructions on enabling hugepages. 2021. URL: https: //
github.com/comsec-group/blacksmith/issues/2#issuecomment-971810211.

Matthew Dempsky and Thomas Dullien. FExploiting the DRAM Rowhammer
Bug to Gain Kernel Privileges. 2015. URL: https://googleprojectzero .
blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html.

Computer Misuse Act. 1990. URL: https://www . legislation . gov . uk/
ukpga/1990/18/contents.

Lucian Cojocar et al. “Exploiting Correcting Codes: On the Effectiveness of
ECC Memory Against Rowhammer Attacks”. In: Proceedings of the IEEE
Symposium on Security and Privacy (SP). 2019, pp. 55-71. URL: https://
ieeexplore.ieee.org/document/8835222.

The Open Source Initiative. The MIT License. URL: https://opensource.
org/license/mit.

Intel. Intel Core i5-8265U Processor. 2018. URL: https://ark. intel.com/
content /www/us/en/ark/products/ 149088/ intel - core-ib5-8265u-
processor-6m-cache-up-to-3-90-ghz.html|

Intel. Intel Xeon ES3-1220 v6 Processor. 2017. URL: https://www. intel .
com/content/www/us/en/products/sku/97470/intel-xeon-processor-
€31220-v6-8m-cache-3-00-ghz/specifications.html.

Harshit Mogalapalli. Rasdaemon does not report new records. 2023. URL: https:
//lore . kernel . org/all/31eb3b12-3350-90a4-a0d9-d1494db7cf74@
oracle.com/.

Shiju Jose and Steven Rostedt. Fiz poll() and select() do not work on per_cpu
trace_pipe and trace_pipe_raw. 2023. URL: https://github. com/torvalds/
linux/commit/3e46d91.

Shiju Jose. Fiz poll() on per_cpu trace_pipe_raw blocks indefinitely. 2023. URL:
https://github.com/mchehab/rasdaemon/commit/6986d81.

Martin Heckel and Florian Adamsky. “Reverse-Engineering Bank Addressing
Functions on AMD CPUs”. In: 2023. URL: https : //dramsec . ethz . ch/
papers/revengamd . pdf.

References 19 Patricia Norton

https://github.com/comsec-group/blacksmith/issues/4#issuecomment-972629985
https://github.com/comsec-group/blacksmith/issues/4#issuecomment-972629985
https://github.com/comsec-group/blacksmith/issues/4#issuecomment-972629985
https://github.com/UzL-ITS/blacksmith/tree/jsonconfig
https://github.com/comsec-group/blacksmith/issues/2#issuecomment-971810211
https://github.com/comsec-group/blacksmith/issues/2#issuecomment-971810211
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.legislation.gov.uk/ukpga/1990/18/contents
https://www.legislation.gov.uk/ukpga/1990/18/contents
https://ieeexplore.ieee.org/document/8835222
https://ieeexplore.ieee.org/document/8835222
https://opensource.org/license/mit
https://opensource.org/license/mit
https://ark.intel.com/content/www/us/en/ark/products/149088/intel-core-i5-8265u-processor-6m-cache-up-to-3-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/149088/intel-core-i5-8265u-processor-6m-cache-up-to-3-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/149088/intel-core-i5-8265u-processor-6m-cache-up-to-3-90-ghz.html
https://www.intel.com/content/www/us/en/products/sku/97470/intel-xeon-processor-e31220-v6-8m-cache-3-00-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/97470/intel-xeon-processor-e31220-v6-8m-cache-3-00-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/97470/intel-xeon-processor-e31220-v6-8m-cache-3-00-ghz/specifications.html
https://lore.kernel.org/all/31eb3b12-3350-90a4-a0d9-d1494db7cf74@oracle.com/
https://lore.kernel.org/all/31eb3b12-3350-90a4-a0d9-d1494db7cf74@oracle.com/
https://lore.kernel.org/all/31eb3b12-3350-90a4-a0d9-d1494db7cf74@oracle.com/
https://github.com/torvalds/linux/commit/3e46d91
https://github.com/torvalds/linux/commit/3e46d91
https://github.com/mchehab/rasdaemon/commit/6986d81
https://dramsec.ethz.ch/papers/revengamd.pdf
https://dramsec.ethz.ch/papers/revengamd.pdf

Appendices

A.1 System Details

System A

Model: Lenovo V15-IWL

CPU: Intel Core i5-8265U (1.6 GHz, Quad-core, x86-64)

RAM: SK Hynix 8 GB DDR4 SODIMM (2.4 GHz, Dual-rank, 8 Banks)
OS: Ubuntu 22.04.3 LTS, Kernel ver. 6.5

System B

Model: Supermicro X11SSL-CF

CPU: Intel Xeon E3-1220 v6 (3 GHz, Quad-core, x86-64)

RAM: Samsung 8 GB DDR4 DIMM with ECC (2.4 GHz, Single-rank, 8 Banks)
OS: Ubuntu 22.04.3 LTS, Kernel ver. 6.5

A.2 Memory Mapping Functions

Mapping Compatible With System A and System B

row_bits: [29,28,27,26,25,24,23,22,21,20,19,18,17]
col_bits: [12,11,10,9,8,7,6,5,4,3,2,1,0]
bank_bits: [[6,13],[14,17], [15, 18], [16, 19]]

Other Mapping

row_bits: [29,28,27,26, 25, 24,23,22, 21,20, 19, 18]
col_bits: [12,11,10,9,8,7,6,5,4,3,2,1,0]
bank_bits: [[6,13], [14, 18], [15, 19], [16, 20], [17, 21]]

20

	Introduction
	ECC
	Rowhammer
	Contributions

	Literature Review
	Rasdaemon
	TRR
	DRAMA

	Requirements
	Problem Statement
	System Requirements
	Software Requirements

	Legal and Professional Issues
	Using an Exploit for Good
	Adapting Others' Work

	Methodology
	ECC Validation
	Simplified Configuration

	Results and Evaluation
	Proof of Concept
	Implementing ECC Validation
	Implementing Simplified Configuration
	Evaluation

	Conclusion
	Summary
	Suggestions for Future Work

	References
	Appendices
	System Details
	Memory Mapping Functions

