
Investigating Information Leakages Observed

Through the Power Consumption Side Channel

on the Morello Board

Andreea-Bianca Fraunhoffer
Student ID: 2038849

Supervisor: David Oswald
Word count: 7203

60-credit report submitted for the degree MEng Computer Science/
Software Engineering with Industrial Year

April 7, 2024

Contents

1 Abstract 2

2 Introduction 4
2.1 Brief Overview . 4
2.2 Aims and Objectives . 5

3 Literature Review and Background 8

4 Methodology 12
4.1 Stages of Experiment . 13

4.1.1 Target Code Development 13
4.1.2 Compatible Compilation 14
4.1.3 Initial Power Trace Analysis 15
4.1.4 Further Power Trace Analysis 17

4.2 Reproducible Final Experiment 18

5 Results and Evaluation 21
5.1 Results and Discussion . 21
5.2 Future Work . 25
5.3 Challenges Encountered . 26

5.3.1 Scope Changes . 26
5.3.2 Equipment Issues . 27
5.3.3 Compilation Tooling Issues 28
5.3.4 Time Constraints . 28

6 Conclusion 29

References 31

1

Chapter 1

Abstract

The Instruction Set Architecture (ISA) of a machine represents the inter-
face found at the intersection between software and hardware that completes
the abstract model of the processor by describing the functionalities that are
supported. The assembly code instructions, registers, primitive data types and
the organisation of memory are encompassed in an ISA, together with any ex-
tensions that provide additional features.

Such an extension is CHERI (Capability Hardware Enhanced RISC Instruc-
tions), a novel architecture extension created by the University of Cambridge
that enables a fine compartmentalisation of software through its implementation
of capability-based memory addressing. This method of managing computer
memory encodes additional information into the direct references to memory
known as pointers, information pertaining to the level of privilege associated
with any given memory reference. The pointer extended in this manner be-
comes the capability, a new primitive data type.

CHERI proposes a hardware centered solution for the software-level problem
of memory safety. Memory safety vulnerabilities comprise the various undefined
behaviours of computers that occur when memory outside of the intended scope
is being accessed or altered, and they represent a serious threat against the
integrity of contemporary software.

Within this context, Arm’s Morello Program has produced the Morello Eval-
uation Board, a prototype System-on-Chip (SoC) whose processor is implement-
ing a CHERI-aware, experimental version of the Arm v8.2-A ISA. The Morello
Porgram is currently undergoing a testing phase, during which Arm’s indus-
try and research partners conduct their own studies and investigations into the
performance of the Morello Board.

In computer security, a side channel represents an aspect of the implementa-
tion of a computer that inadvertently leaks information that would otherwise be
inaccessible. Side channels can be of the hardware variety, such as power con-
sumption, electromagnetic emanations, sound, temperature, or of the software

2

variety, such as cache timing and speculative execution.

This project monitors the power consumption side channel of the Morello
Board and analyses the leakages discovered, namely the appearance of execution-
dependent peaks sufficiently distinct in shape to potentially allow the identifi-
cation of the instructions executed at a specific point in time.

3

Chapter 2

Introduction

2.1 Brief Overview

Memory safety issues represent the undefined behaviour of computer systems
that occurs when a user, malicious or not, has the ability to read or write to
locations in memory that should normally be inaccessible. They often lead
to serious consequences such as arbitrary code execution, particularly when
exploited through attacks like the buffer overflow. Buffer overflows arise when
an attacker takes advantage of an insecure buffer by providing it with an input
that is large enough to overwrite the parent process’ return pointer.

The control allocated to the programmer by languages with a low level of
memory abstractions like C or C++ facilitates the spread of memory safety
issues by allowing direct references to memory under the shape of pointer arith-
metics (the manipulation of the memory address encoded in the pointer through
arithmetic operations) and dynamic memory allocations (the manual manage-
ment of heap memory allocations that is executed through C functions like
malloc() or free()); regardless, C and C++ are among the most popular pro-
gramming languages worldwide [11], which suggests that vulnerabilities relating
to memory safety could affect a large part of modern software[16].

In 2014, the University of Cambridge together with SRI International have
begun a research project titled Capability Hardware Enhanced RISC1 Instruc-
tions, also known as CHERI [13, 17]. CHERI extends the processor model
represented by conventional Instruction Set Architectures (ISAs) with support
for the capability, a new data type playing a key role in addressing memory.

An ISA comprises the abstract interface that depicts the supported func-
tionality of the processor hardware and its implementation in software. The
extension proposed by CHERI seeks to mitigate memory safety issues at the
hardware level by allowing a finer compartmentalisation of software through
capabilities. Thus, within the CHERI ISA, pointers become capabilities, a data

1Reduced Instruction Set Computer

4

type that encodes within itself the reference to the location in memory previ-
ously stored in the pointer, together with additional metadata. The metadata
contains information related to the privilege of the capability, such as the per-
missions granted to the capability or the bounds in memory the capability is
allowed to access. By tightly constraining the authority of references to memory
locations, the severity of memory breaches is greatly reduced, together with the
possibility of attacks like buffer overflows [13, 17].

Arm launched the Morello Program in 2019 in partnership with the re-
searchers behind CHERI and built a prototype System-on-Chip (SoC) that im-
plements the CHERI architecture extension on one of their proprietary proces-
sors [15]. Copies of the Morello Evaluation Board, or the Morello Board for
short, were shipped to the wide ecosystem of Arm research and industry part-
ners in 2022, as part of the program’s testing phase, allowing these partners to
conduct their own investigations into the applicability of a system relying on
capability-based addressing.

In view of the fact that the Morello Board is a physical hardware implemen-
tation of a state-of-the-art mitigation against memory vulnerabilities, determin-
ing the extent to which it protects against other types of security threats could
represent a worthwhile study. In particular, observing the effects of physical
implementation attacks such as side channel analysis attacks begets interest, on
account of the hardware-level innovations present on the Board.

Side channel analysis attacks leverage information pertaining to either the
hardware or the software implementation of a computer in order to obtain data
that would be inaccessible by other means. By monitoring the fluctuations of
characteristics such as the power consumption or the electromagnetic emana-
tions of a processor or by recording the elapsed time of program executions or
cache fetches (among other things), an attacker can gain insights into values
used by the executing software, bypassing the cryptographic measures enforced
on the machine (which themselves are often the target of these attacks, as side
channel leakages during cryptographic operations have been demonstrated to
provide a good starting point for the retrieval of secret keys [6]).

Hardware side channel attacks are considered to be the main focal point of
this project because the unique modifications brought to the hardware of the
Board could unintendedly prove to disclose information. The power consump-
tion side channel will be monitored during this project in the hopes of observing
any tendencies to leak data that the Morello Board might display.

2.2 Aims and Objectives

The main objective of this project is to discover whether the Morello Board
leaks information through the power consumption side channel. If so, a sec-
ondary objective becomes assessing the severity of the leak by examining what
data is leaked, how it pertains to the software executing on the Board, and

5

whether it would be useful to an attacker looking to exploit this particular side
channel.

An experiment is proposed as means of achieving the goals stated above.
The experiment entails the monitoring of the power consumption of the Morello
Board as it runs capability-aware C code, followed by the further analysis and
interpretation of the resulting power traces. Methodologically, the experiment
is comprised of four steps:

• The development of the piece of software to be used as the target code;

• The compilation of the target code as a CHERI compatible binary file
that will be executed on the Board;

• The initial analysis of the power trace captured during the execution of
the target binary with the help of a power measurement device, such as
an oscilloscope;

• The further interpretation of the power traces, using processing scripts.

Several outcomes have been predicted to follow from the results of this ex-
periment:

• An unlikely conclusion would be that the Morello Board does not leak
any information at all through the power consumption side channel. This
is improbable because of the fundamental assumptions about the func-
tionality of modern CPUs that confer side channel analysis attacks their
efficiency, as well as because of the fact that side channels were not con-
sidered during the assembly of the Morello Board’s threat model [19].

• Moreover, it is also rather unlikely that the Morello Board discloses a
great amount of information through its power consumption. This is due
to the current awareness of the threat represented by the wider spectrum of
side channel attacks, which led to general mitigations (such as favouring
constant execution paths) being implemented, which can inadvertently
address the vulnerabilities used as the points of entry for power analysis
attacks.

• The most probable outcome is defined to be that the Morello Board
does leak data through the power consumption side channel, although an
amount that could only be useful to a skilled attacker in a very particular
setting.

Over the course of the project, the experiment revealed the appearance of
instruction-dependent peaks on the power traces recorded during the execu-
tion of the target code, peaks which seemed to correspond to the assumptions
made about the power consumption of each stage of the target code. This find-
ing denotes a potential vulnerability that could allow an attacker to identify
the instructions executed by a program by observing the power trace of the

6

respective execution. The vulnerability would affect software with non-constant
execution paths, which could prove to be sufficient to uncover the values of the
used operands.

7

Chapter 3

Literature Review and
Background

One of the earliest examples of an attack that exploits the vulnerabilities of
computer memory using a buffer overflow dates back to 1988 - the Morris worm
[4], which relied on a buffer overflow inside of a network protocol. Soon after, in
1996, the seminal work ‘Smashing the Stack for Fun and Profit’[5] exposed the
pervasiveness of this vulnerability: at the root of the problem lay the undefined
behaviour of some of the most widely-used string processing functions provided
by C, such as strcpy() and gets(). The devastating results of allowing memory
to be overwritten painted a bleak picture of the security of the existing software.

In this context, software and hardware mitigations against buffer overflows
soon began to appear: Address Space Layout Randomisation randomly rear-
ranges the memory locations of the components of a process with the aim of
attempting to stop the intentional misdirection of code execution [7], stack ca-
naries raise segmentation fault errors if it is detected that they were overwritten
[8], the NX (no-execute) bit creates a hardware delimitation between locations
in memory by marking some as non-executable. Safe alternatives to the vulner-
able C functions have been circulated and even new, memory safe programming
languages such as Rust have been created as part of the effort to address the
danger of memory vulnerabilities [14].

Currently, exploiting buffer overflows is not as simple as it used to be, due
to the rapid adoption of the aforementioned targeted defenses, as well as due
to the impact of tools like Valgrind [9] or the Address Sanitizer [10], which
help programmers actively discover and prevent memory vulnerabilities during
the software development process. In spite of the widespread improvement of
safeguards, memory safety issues are still rampant: a presentation delivered by
a member of the Microsoft Security Response Center in 2019 stated that 70%
of the security bugs reported across 12 years are memory problems [16].

The University of Cambridge’s project, CHERI, aims to introduce an ar-

8

chitectural solution to the problem of memory safety by improving software
compartmentalisation from the hardware layer of a computer system, thus en-
suring a firmer containment of any potential memory breach [13, 17]. This is
achieved through the use of capabilities, the new, hardware-supported primi-
tive data type that replaces the memory references known as pointers, whose
management is known to create vulnerabilities. The CHERI ISA extends con-
ventional ISAs with capability-aware instructions, providing compatibility with
both software built for established architectures and new software that would
be built for CHERI systems.

In order to describe a 64-bit pointer, the correspondent capability will use
128-bits, and similarly, for 32-bit pointers, the capability will measure 64 bits.

As depicted in Figure 3.1, the contents of a capability consist of:

• The address of the memory reference itself (the previous pointer);

• The capability bounds, which describe the limited space in memory where
the capability is authorised to execute instructions;

• The object type, a value that encodes the type of object the capability is
referencing;

• The permissions, which limit the number of instructions the capability is
allowed to execute;

• Separately, a one bit validity tag ensures that invalid capabilities cannot
perform any instructions.

Figure 3.1: The visualisation of a 128-bit capability as per ’An Introduction to
CHERI’[17].

CHERI achieves its main goal of software compartmentalisation through
several ground assumptions about the functionality of capabilities:

• Provenance validity states that capabilities can only be derived through
instructions that came from another valid capability;

• Capability monotonicity states that the privileges (bounds, permissions)
of the parent capability cannot be exceeded by the child capability;

9

• Reachable capability monotonicity guarantees that the set of reachable
capabilities cannot increase during arbitrary code execution.

CHERI’s fine-grained compartmentalisation of software is reliant on the prin-
ciples of least privilege and of intentional use. As per the latest version of the
CHERI ISA, the principle of least privilege has been implemented through a
software design choice that allows each program component to only execute
with the lowest level of privilege it needs, whereas the principle of intentional
use permits CHERI to avoid ’confused deputy’ problems by limiting privileged
processes acting on behalf of lesser privileged ones to exclusively use resources
the less privileged process could access [20]. Thus, code executed on a CHERI
system will have enough privilege to execute what it is intended to, and no
more. This collection of rules and generalisations relating to the functional-
ity of capabilities represents the solid base supporting CHERI’s strong security
assurances.

Arm’s Morello Board represents the hardware prototype of a CHERI system,
created as part of the Morello Program for the purpose of allowing researchers
and industry partners to assess the functionality of an architectural extension
featuring capability-based memory addressing [15]. It is based on a standard
Arm Neoverse N1 processor implementing the Morello ISA: an experimental
version of Arm’s proprietary v8.2A ISA that has been extended to provide
support for capability-aware instructions. The most significant change to the
conventional CPU micro-architecture has been the extended register file which
allows the general purpose registers to also hold capabilities [18]. These physical
registers have been expanded to 129 bits (the length of a capability derived from
a 64-bit pointer, together with its validity tag, as seen in 3.1). Another upgrade
to the existing micro-architecture has been to the CPU cache and the system
buses, which now carry an extra bit (corresponding to the validity tag) with
every 128 bits of data.

The Morello Program, or CHERI behind it, is not the first project to propose
a capability-based computer architecture - the concept of a capability was first
defined by Dennis and Van Horn in their 1966 paper ’Programming semantics
for multiprogrammed computations’[1]. Capability-based addressing has been
explored in depth in the late twentieth century, with a number of significant
developments occurring mostly between the 1970s and the 1980s [12, 2], notable
being the Cambridge-developed CAP computer as a predecessor and a source
of inspiration for CHERI[3, 13].

Thus, bearing in mind that passive side channel analysis attacks only became
widely known in the late 1990s (Kocher’s ’Differential Power Analysis’ explicitly
described an attack that could break the Advanced Encryption Standard (AES)
cryptographic algorithm using information gathered by analysing power traces
in 1996 [6]), it could prove to be worthwhile to monitor the leakages of a physical
side channel belonging to the Morello Board, a present-day physical system
that implements a capability-based addressing architecture, since the periods of
active research into both of these topics did not overlap until CHERI.

10

Additionally, in the 2023 paper ’Arm Morello Programme: Architectural
security goals and known limitations’ [19], it is stated that side channel analy-
sis attacks were not given further consideration when assembling the hardware
threat model. The study depicts the Morello Board’s resistance to side channel
attacks as being similar to that of the Neoverse N1, a processor which provides
limmited protection against this attack vector. Although CHERI focuses on
defending software-level vulnerabilities and side channel analysis attacks rep-
resent a hardware-level vulnerability, it is also mentioned that contributions
investigating the intersection of these topics are welcome.

11

Chapter 4

Methodology

The aim of the experiments conducted as part of this project was to mon-
itor and interpret the power leakages of the Morello Board. In order to assess
whether leakage takes place, a piece of software known as the target code (or
attack code) should be running on the targeted processor. It is expected that
information pertaining to the target code, such as the value of operands or
whether an instruction was executed or not, would leak. In turn, the processor
should be connected to a power measurement device such as an oscilloscope.
During the last step, the reading displayed on the oscilloscope as a waveform
plotted against voltage and time (known as the power trace) would be further
analysed, particularly to see whether the expected target code leakage occurred.

Corresponding to the brief outline above, the experimental stage of the
project has had four stages:

• Target code development, during which the attack code that would run
on the Board was developed;

• Compatible compilation, which tackled compiling the target code as a
CHERI-compatible binary and, secondarily, porting the binary file to the
board;

• Initial power trace analysis - the superficial analysis of the power trace
resulted from the execution of the target binary as displayed on the power
measurement device;

• Further power trace analysis - an in-depth analysis of the power trace
using data processing scripts, and the development of said scripts.

This will also be the structure used in this report to describe the methodology
of the experiments, followed by a description of the final experiment that has
yielded the results presented and discussed in Chapter 5 Results and Evaluation.

12

4.1 Stages of Experiment

4.1.1 Target Code Development

The target code refers to the piece of software that is running on the targeted
processor during the monitoring of its power consumption. It should include dif-
ferent types of instructions (both power-hungry and power-efficient), such that
the resulting power traces capture as wide a variety of behaviours as possible.
The target code should reveal significant power consumption differences accord-
ing to the particular instruction it would execute or the values it would process,
potentially to the extent where an attacker could identify what instruction is
executed at a certain point in time (which could allow an attacker to break
cryptographical protocols that follow different execution paths for different in-
put values[6]) or what value was one of the operands (even the leakage of one bit
could lead to the discovery of a key, as seen in the power consumption attacks
against AES[6]).

Furthermore, power leakage could be emphasised through contrast. If the
power trace resulting from the execution of target code which has high- and
low-power instructions alternating in a specific sequence follows said sequence
to some extent, the probability of the system being vulnerable due to power
leakages increases. The NOP instruction, by definition, does nothing for a
clock cycle. It has been used as a contrasting instruction due to its low power
consumption, as it would consume an amount of power comparable to that of
the system in an idle state.

Finally, considering the scope of the project, the target code should make
use of the architectural extensions provided by CHERI. To ensure that the tar-
get code will utilise capability-aware instructions in a capability-based memory
addressing context, as well as to be able to compile the code as a CHERI-
compatible binary file, the attack code must be written in a language targeted
by CHERI, and it should include dynamic memory allocations.

Following this brief set of requirements, C was chosen as the attack code
implementation language, as it is one of the languages targeted by CHERI
precisely because its low level of abstractions permits memory safety issues to
occur. C also allows inline assembly blocks, which increases its compatibility
with the needs of this experiment, because calling the NOP instruction directly
as assembly facilitates its usage.

An initial version of the target code dynamically allocated space for a large
(n=1000000) array, iterated through it, stored in each array element the value
of its index multiplied by an arbitrary number (m=123) and then executed one
NOP for each entry in the array (as displayed in the pseudocode algorithm
1). When the corresponding assembly code was examined, the majority of
instructions were loads (LDR) and stores (STR), followed by additions (ADD).
The resulting power trace displayed a sharp, consistent peak (the peak inside
the yellow circle in Fig. 4.1).

13

Algorithm 1 Pseudocode of an early version of the target code

1: while true do
2: int size = 1000000;
3: malloc() arr[size];
4: for i = 0, 1, . . . size do
5: arr[i]*=123;
6: NOP;

Figure 4.1: Peak visible when running an initial version of the target code

Retrospectively, the trace was constant because of the lack of contrast in the
executed instructions’ power consumption. The number of NOPs was not large
enough to force the processor into an idle state for enough clock cycles for it to
‘show’ on the trace, possibly because of pipelining. However, the discovery of
the execution-dependent sharp peak was promising, leading future iterations of
the target code to be built upon this one.

4.1.2 Compatible Compilation

The compilation of the target code as an Arm ISA pure capability executable
represented a significant stage of the experimental process, because of the many
platform incompatibilities between the personal laptop used for the project and
the Morello Board.

Initially, the preferred means of compilation was the Morello Fixed Virtual
Platform (FVP), a virtual emulation of the Morello CPU model running inside of
a Docker container. Mounting a shared folder enabled communication between
the two machines: locally stored C target code files were compiled as Arm

14

compatible binary files on the FVP before being transferred to the board via
the Secure Copy Protocol (SCP) over SSH. It soon proved to be unsustainable
due to performance reasons, as the FVP took upwards of 10 minutes to boot,
and most of the executed commands ran very slowly.

A key step towards obtaining the principal results of this experiment was
beginning to compile files as pure capability with the purpose of fully making
use of the capability-based memory addressing provided by the Morello Board.
The FVP contained a copy of the Morello Software Development Kit (SDK),
which, although functional, was slow enough to warrant the need to find another
method of compiling the attack code.

The next approach was to use the Cheribuild toolchain. Cheribuild is a
Python-based tool that facilitates building CHERI-compatible software for dif-
ferent target environments, including Morello. Cheribuild is based on CheriBSD
(a version of the FreeBSD operating system that provides support for capabili-
ties), whereas the board was booted to run a Debian Linux distribution, leading
to a compilation incompatibility that did not permit the binary files to run.

The latest solution to this issue has been to transfer the target code to the
Morello Board through SCP and compile it there. This is a viable option because
the Board software includes the same SDK found on the FVP. Further detail
regarding the different problems encountered during this step of the experiment
can be found in Section 5.3.3 Compilation Tooling Issues.

Finally, the process of communicating and interacting with the Board also
went through several stages across the experiment. The Morello Board was
connected to the personal machine through USB, as well as through a network
connection to allow SSH. For the largest part of the experiment, the network
connection was represented by the Security and Hardware laboratory’s wireless
network. Unfortunately, the network proved to be unstable later during the
course of the project. For quick access to a root shell, communicating through
the USB port using a serial port communication program such as Minicom was
sufficient, but it delayed the process of transferring files back and forth between
the local environment of the personal machine and the remote one of the Board.
Eventually, the wireless connection was replaced by a static Ethernet connection
which mostly functioned without issues.

4.1.3 Initial Power Trace Analysis

Monitoring the power consumption side channel of a given integrated circuit
typically requires particular tools to be used: a power measurement device (for
example, an oscilloscope) and a probe. The probe will ’listen’ to the power
consumption over time of a given location of the circuit (a location that is sus-
ceptible to power leakages), which will then be displayed on the oscilloscope as a
waveform. The power consumption is a result of the digital logic implemented at
the circuit level: setting bits to 1 is equivalent to ’high’ from a digital electronics
perspective, which means that the respective transistors composing a bit will

15

require roughly 5V of current to change their state from 0 (’low’, corresponding
to approximately 0V).

An interesting peak, in the context of this experiment, would be one that
appears, or whose shape is altered, only during the execution of the target code.
The location chosen for the placement of the probe was in close proximity to the
power supply (Figure 4.2). Different places across the board have been taken
into consideration, but, upon a quick examination, the resulting traces did not
seem to display any interesting peaks.

Throughout the experiment two devices have been used to capture power
traces: a regular oscilloscope, and later a PC oscilloscope. The first oscilloscope
used in the experiment was a Rigol DS1074Z with the trigger value set to -98
mV and a sample rate of 1.25 G/s. The execution-dependent peaks have been
observed at 500 ns/div and 50 mV/div.

The Rigol oscilloscope functioned normally for the most part, save for when
the captured power trace data needed to be transferred to a different machine.
Sending the trace data to a laptop for further processing has proven to be
problematic because of an issue with the Rigol drivers. The oscilloscope provided
a USBTMC port for the purpose of data transfer, as well as device drivers to be
installed on the receiving end of the USBTMC connection; however, there was
no vendor-approved driver for a Linux system, which is the operating system of
the personal laptop that has been used in the experiment.

A different approach involved manually simulating the functionality of an
oscilloscope device driver with a Python script. The oscilloscope recognised the
connection, although, when analysed, the recorded values of the power trace
data did not match those displayed on the oscilloscope. Some time was spent
on trying to solve this problem, but a solution was not found in a timely man-
ner (further details about the issues encountered with the power measurement
equipment can be found in 5.3.2 Equipment Issues). Because of this, following
input from my supervisor, I have switched to a different power measurement
device, the Personal Computer (PC) oscilloscope.

The PC oscilloscope was a PicoScope 6403E with the trigger set to 600mV
and the same sample rate of 1.25 G/s. The significantly higher trigger value
could be attributed to the increased precision of the PicoScope.

The biggest improvement to the experimental setup brought by the Pico-
Scope has been the ease with which the power trace data could be captured
and saved. Since the PicoScope is a PC oscilloscope, it was meant to be used
alongside a computer: all that was required was a male-to-male USB cable to
connect the device to a machine, and a readily available device driver to be
installed on the given machine. This connection had to be established before
the PicoScope was used to record traces, because it doesn’t have a standalone
display for the data and it relies on the device driver graphical user interface to
show the power trace waveform on the connected computer’s screen.

16

Furthermore, once a suitable trace has been isolated, saving its data only
requires a click on the ‘Save’ button and to choose a preferred file format from a
list (the options were CSV, PNG and Psdata, the PicoScope proprietary format).
Within the context of this experiment, a suitable trace is a power trace captured
over a long enough period of time such that all of the different shapes of the
execution-dependent peak appear at least once, and the trace data has been
saved as a CSV file.

4.1.4 Further Power Trace Analysis

The final step of the experimental stage consists of processing the CSV file
containing the power trace data with the help of a script in order to facilitate
interpretation.

Initially, when the Rigol oscilloscope was still a part of the experimental
setup, my supervisor had offered a set of Python scripts that were previously
of use in similar projects. These provided a workaround for one of the issues
surrounding data acquisition, as they implemented a simple device driver by
reading the power trace data as bytes coming directly from the oscilloscope
before converting it into a list of numbers that could be used to generate a
Matplotlib plot. The device driver was discarded after switching to using the
PicoScope as the means of power trace measurement, but the idea of using
Python together with Matplotlib was taken further.

Given the power trace data’s CSV format, a library that efficiently handles
reading from CSV files becomes a requirement for the plotting script. Both
Python’s csv module and the Pandas data analysis library were considered, but
Pandas was ultimately chosen because of the degree to which the DataFrame
object interface facilitated the development process, especially since the trace
data was captured as a very large file, and Pandas is commonly used to process
large amounts of data.

Multiple representations of the power trace data help interpret the data
from different perspectives; because of this, several plotting scripts have been
created over the course of the experiment, each requiring different trace inputs
and producing different plot outputs:

• plot from csv.py produces four views of the same large power trace, ap-
proximately centered on the different shapes taken by the interesting peak
as the target code executes;

• plot peaks compute frequency.py takes as input a smaller trace, marks the
first peaks of the repeating sequence of the trace and computes the se-
quence’s frequency;

• plot together.py utilises separate traces taken during the different stages
of the target code, and one while the Morello Board is idle, and plots
the traces together, thus highlighting the differences in the shapes of the
interesting peak.

17

4.2 Reproducible Final Experiment

This section aims to describe the steps taken during the experiment that has
yielded the results presented in 5.1 Results and Discussion, to be potentially
used as a reference for future research (see 5.2 Future Work).

The target code used, mul nop loop.c, has three stages of execution which
become visible on the captured power traces as execution-dependent peaks. It
operates in a loop: initialising the elements of a very large array, multiplying
them, and then executing an even larger number of NOPs (see algorithm 2).

Algorithm 2 Pseudocode for mul nop loop.c

1: while true do
2: int size = 12345678901234;
3: malloc() arr[size];
4: for i = 0, 1, . . . size do
5: initialise with some value;

6: for i = 0, 1, . . . size do
7: perform many multiplications;

8: for i = 0, 1, . . . size ∗ size do
9: NOP;

10: free() arr;

In order to obtain a pure capability executable, the target code file is trans-
ferred to the Morello Board through the Secure Copy Protocol (SCP), where it
will be compiled using the sourced copy of the Morello Software Development
Kit (SDK) available locally.

A probe connected to an active PicoScope is placed on the Morello Board at
the location visible in Figure 4.2. The settings of the PicoScope software are:

• Trigger value set to 600 mV;

• Vertical axis measuring between -1 and 1 V;

• Horizontal axis measuring 200 us/div;

• Sample rate of 1.25 G/s.

The pure capability binary file is executed, and the power trace captured as a
CSV file. The CSV file is passed as input to the plotting script plot from csv.py,
which will generate four zoomed-in windows of the trace data (Figure 4.3). The
views should roughly correspond to each execution stage, although the bottom-
right window needs to be adjusted by moving forward on the plot until x = 32.8
us is roughly in the centre of the x axis.

Alternatively, by capturing smaller traces (500ns/div) of the execution of a
single instruction (and of the idle state of the Morello board), a combined plot

18

can be created using plot together.py (Figure 5.1). Each one of these traces can
also be used as input for plot peaks compute frequency.py in order to obtain the
frequency at which the sequence containing the peaks of interest is occurring
(Figure 4.4).

Figure 4.2: Placement of the probe on the board

19

Figure 4.3: Four views of the interesting peak from the same trace: top-left: idle
state; top-right: initialisation; bottom-left: in transition between multiplication
and NOP; bottom-right: NOP;

Figure 4.4: The marked repeating peaks of the sequence used to compute a
frequency of F = 0.3 MHz

20

Chapter 5

Results and Evaluation

5.1 Results and Discussion

The results obtained following the experiment are instruction-dependent
peaks in the captured power traces, one corresponding to each execution stage
of the target code.

Figure 5.1 shows all three shapes of the peak (the array initialisation trace
is drawn in orange, the multiplication trace in green and the NOP in red)
superimposed on that of the same peak recorded during an idle state (which is
drawn in blue), highlighting the difference in appearance between each of them.

Figure 5.1: Zoomed-in combined power trace

Another view of the results is presented in Figure 4.3, where the four windows

21

display the different shapes of the peak that have been captured as part of the
same power trace.

Figure 5.2 presents a portion of a power trace recorded while the Morello
Board was in an idle state, with the peak of interest circled in yellow. Over the
course of the experiment, that peak has displayed a regular change in appearance
that seems to be closely linked to the instructions executed at a given moment.

Figure 5.2: Power trace during idle state

The two short peaks of the idle state become a taller, blunt peak when
the target code is executing the array initialisation stage, as seen in figure 5.3.
This stage is responsible for the execution of a large number of load and store
instructions with similarly large operands.

Further, the multiplication execution stage presents a tall, sharp peak (Fig-
ure 5.4). This stage is considered to consume the most power, as it also executes
many multiplications with large numbers.

22

Figure 5.3: Power trace of the Array Initialisation target code stage

Figure 5.4: Power trace of the Array Multiplication target code stage

The final shape taken by the interesting peak is one somewhat similar to the
idle shape: when the target code reaches the NOP stage, which executes a NOP
a very large number of times (n = 1234567891234 squared), the peak becomes
short again. Figure 5.5 shows a view of the peak from the same perspective as
all the previous plots; the similarity to the idle state peak is more visible when
the plot is zoomed in, as is the case for Figure 5.6.

23

Figure 5.5: Power trace of the NOP target code stage

Figure 5.6: Zoomed-in power trace of the NOP target code stage

These findings seem to roughly correspond with the power consumption
of the targeted instructions: NOPs should consume little to no power, so it
makes sense for the shape of the NOP peak to somewhat resemble the idle
state peak. Loads and stores consume more power than a NOP, resulting in the
array initialisation peak being taller than the NOP peak, but shorter than the
multiplication peak, since they consume less power than multiplications.

The key discovery of the project is that each target code stage produces a

24

different peak. This hints towards the possibility that, should a more compre-
hensive attack code be used, the instructions could be identified from ’read-
ing’ the power trace which could provide sufficient leeway for an attacker to
implement a power consumption side channel attack; particularly, identifying
instructions from a power trace represents a vulnerability against attacks tar-
geting cryptographic algorithms that include branches during execution.

An unexpected finding has been the presence of other seemingly execution-
dependent peaks elsewhere in the trace (Figure 5.7). These peaks have only
been observed during the final stage of further trace analysis. This represents
a peculiar discovery, as they are similar in size and shape while appearing at
distinctly different moments in time.

Figure 5.7: Combined power trace zoomed in on unexpected instruction-
dependent peaks

Finally, considering the outcomes suggested in the Introduction, the obtained
results point towards a potential vulnerability against power consumption side
channel attacks owed to a leak of information that could be used to identify
instructions.

5.2 Future Work

An interesting future objective could be to directly compare the power leak-
ages between the Morello Board and its conventional architecture counterpart,
the Neoverse N1 processor.

The power trace resulting from the execution of same target code, compiled
as normal C code, could be compared with the traces captured as part of this

25

project. If the traces appear to be similar enough, that could be sufficient
to denote that the Morello Board is more or less just as vulnerable to power
consumption side channel attacks as the Neoverse N1, implying that the hard-
ware support for capability-based addressing does not produce any unexpected
information leaks. Conversely, should one of the traces display more execution-
dependent irregularities than the other, that could offer a hint towards which
architecture is more predisposed to power consumption side channel leakages.
The most impacting result would be if the Morello Board would turn out to
be less vulnerable to power consumption side channel analysis attacks, as that
could potentially present CHERI as one solution that addresses two problems:
memory safety, as well as power leakages.

Additionally, another considerable avenue for future research could be at-
tempting to break a naive implementation of a crypto algorithm like RSA, as
instruction identification would be sufficient to extract the key during the algo-
rithm’s Square-and-Multiply step.

It could also prove worthwhile to further analyse the power leakages of the
capability-specific instructions of the CHERI ISA supported by the Morello
Board.

Finally, other potential investigations could entail writing the target code
in a different programming language, extending the target code with stages
corresponding to other instructions, as well as monitoring different side channels
(electromagnetic emanations could raise interest for reasons similar to power
consumption).

5.3 Challenges Encountered

Over the course of the project certain limitations of various nature and
impact have arisen. Each challenge is briefly described below, together with the
solution or workaround discovered.

5.3.1 Scope Changes

The proposal for this project presented a larger array of side channels that
the Morello Board would be tested against. Primarily, it also included the elec-
tromagnetic emanations (EM) side channel alongside power consumption, as
well as outlining a plan to actively implement a hardware side channel attack
setup against the board for at least four well known attacks: Simple Power Anal-
ysis (SPA), Differential Power Analysis (DPA), Simple EM Analysis (SEMA)
and Differential EM Analysis (DEMA).

The difference in scope between the proposal and the current project is owed
to the significant learning curve that was encountered, particularly in the early
stages of the project. The experimental stage has represented the first time
in my academic career when I conducted laboratory work; this lack of previous

26

experience has translated into taking a longer time to get accustomed to the flow
of the project. Upon beginning the laboratory tasks in earnest, I understood
that the experiment blueprint described in the proposal had been too ambitious,
as it had not taken into account that I would need longer to learn the basics
and to adapt. My supervisor has been in support of a reduction in scope, as he
was also concerned by the difficulty of fulfilling all of the proposal’s objectives
within the available time frame.

5.3.2 Equipment Issues

As mentioned previously in the Methodology section, one of the most signif-
icant setbacks encountered while working on this project has been the issue of
obtaining the power trace data from the Rigol oscilloscope.

The oscilloscope had a USBTMC port that was intended for use as a means of
transferring data to a computer in tandem with the appropriate device driver.
The crux of the problem arose from the limited operating system support of
the vendor-approved device driver, as it only supported Windows machines.
Although the laptop used as part of the experiment has a dual-boot setup of
both Windows and Linux, the experiment required the exclusive use of Linux,
and setting everything up again on Windows would have diverted focus away
from the next steps for too long.

Another solution could have been to commit to process the power trace data
on a different machine, which would run Windows, defaulting to the personal
laptop for matters related to the target code. The reason why this avenue has
not been pursued is because I only own one laptop, and other ways of getting
long-term access to another laptop would have taken far too long.

Eventually, my supervisor and I have agreed on following the manual ap-
proach: using the data processing script also as a means of acquiring the data
over the USBTMC connection by implementing a device driver. I was provided
with the skeleton of such a driver, that had been previously used in similar
setups.

The basic functionality of the driver was the ability to send commands to the
oscilloscope and to record data. Nevertheless, when the script was run and the
power trace data was being recorded, visual cues from the oscilloscope signaled
an invalid command input. A closer investigation of the raised error did not
reveal any bugs, and it appeared that the data was being read regardless of the
error, as the plotting script received a set of data read from the oscilloscope and
created a plot. However, the plot did not match the power trace the oscilloscope
had captured, and upon further analysis, the data itself was incorrect.

Following these incidents, after analysing the options available, my super-
visor and I have decided to switch to monitoring power consumption using a
PicoScope because of the intuitive and uncomplicated manner through which a
user is permitted to save and export the trace data.

27

5.3.3 Compilation Tooling Issues

The various components of the CHERI and Morello toolchains have come
with many issues over the course of the project. Bearing in mind the recent
release of the Morello Program, as well as the fact that the Morello products
represent prototypes, and not fully established systems, toolchain difficulties
were expected.

Primarily, the Morello FVP, which initially was the first point of contact
with the Morello implementation of CHERI, ran very slowly. Considering its
nature as a virtual emulation of a different architecture, some slowness was
anticipated, but it often negatively affected the flow of the experiments. The
FVP was also used as an environment where Arm executables would be ran
before being transferred to the board in order to make sure the code superficially
executes correctly. The issue was the delayed execution time of the compiled
code, which ran slowly enough to make it seem like the FVP was frozen. This
gave the impression that the code was faulty, even if it would have executed
correctly on the board.

This preliminary execution of the code could not be done anywhere other
than the FVP or directly on the board because of incompatible architectures:
the machine used as part of the experiment has an x86 architecture, whereas
the Morello Board is based on Arm.

Furthermore, other options also turned out to be problematic, as compiling
code with the CHERI-aware Clang compiler included in Cheribuild produced
pure capability executables that were incompatible with the Morello Board, due
to Cheribuild’s reliance on the CheriBSD operating system. The Morello Board
was running Debian, thus creating another incompatibility.

The solution discussed previously in 4.1.2 Compatible Compilation, com-
piling the code directly on the board, proved to be the best way to get fully
compatible purecap binary files.

5.3.4 Time Constraints

Two reasons have been the cause of the time constraints of this project: my
unfamiliarity with the notions, toolchains and workflows involved, and the time
spent trying to find workarounds for the issues mentioned before. This project
has been my first exposure to laboratory work, to working with equipment other
than a computer (such as the oscilloscope and the PicoScope), to following
procedures typical of experiments. Getting accustomed to these activities took
longer than was previously expected.

Similarly, the literature review stage also took longer than planned because of
the novel nature of the CHERI architecture and because of the recent release of
the Morello Board. The body of research work examining various aspects of the
Morello Board is slimmer than the one focusing exclusively on CHERI, making
it more difficult to research information relating specifically to the board.

28

Chapter 6

Conclusion

The intention of this project has been to investigate whether the Morello
Evaluation Board, a System-on-Chip prototype that implements CHERI leaks
information related to code execution through the power consumption side
channel. CHERI, or Capability Hardware Enhanced RISC Instructions, rep-
resents an architectural extension of conventional ISAs that provides support
for capability-based memory addressing, a means of managing memory that in-
creases the degree of software compartmentalisation by limiting the privileges
of the memory references known as capabilities. Comprised of the address in
memory that is referenced and other relevant metadata that describes the level
of authority of said reference, the capability represents a new primitive data
type that replaces pointers in the CHERI ISA.

The monitoring of the power consumption side channel of the Morello Board
involved the elaboration of a target code to emphasise any potential leakages,
the compilation of the code as a pure capability binary file and the analysis
of the power trace generated by the execution of the compiled target code.
Following this experiment, a leak has been discovered, in the shape of peaks
whose appearance is dependent on the instructions executed at a given moment
in time. Compared to the power trace obtained as a result of the Morello Board
being in an idle state, the peaks present on the active power trace suggest a
correlation with the power consumption of the instructions in question: power-
hungry instructions produced taller peaks, and low-power instructions lower
peaks.

The experiment has only focused on a limited number of instructions -
namely loads, stores, multiplications and NOPs - and they seemed to be identi-
fiable on the power traces due to the distinct shapes of the respective execution-
dependent peaks. This leakage could prove sufficient to mount a power analysis
attack targeting secret values utilised as part of software with a non-constant
execution path.

To conclude, this project has met the objective of discovering and investi-
gating an information leakage obtained through the monitoring of the power

29

consumption side channel of the Morello Board, and the observed results could
prove to be a solid stepping stone for further research concerning the side chan-
nel analysis of capability-based memory addressing ISAs such as CHERI.

30

References

[1] Jack B Dennis and Earl C Van Horn. “Programming semantics for multi-
programmed computations”. In: Communications of the ACM 9.3 (1966),
pp. 143–155.

[2] Robert S. Fabry. “Capability-based addressing”. In: Communications of
the ACM 17.7 (1974), pp. 403–412.

[3] Roger M. Needham and R. D. H. Walker. “The Cambridge CAP com-
puter and its protection system”. In: Symposium on Operating Systems
Principles. 1977. url: https://api.semanticscholar.org/CorpusID:
16198472.

[4] Eugene H Spafford. “The Internet worm program: An analysis”. In: ACM
SIGCOMM Computer Communication Review 19.1 (1989), pp. 17–57.

[5] Aleph One. “Smashing the stack for fun and profit”. In: Phrack magazine
7.49 (1996), pp. 14–16.

[6] Paul Kocher, Joshua Jaffe, Benjamin Jun, et al. “Introduction to differ-
ential power analysis and related attacks”. In: (1998).

[7] PaX Team. “PaX address space layout randomization (ASLR)”. In: http://pax.
grsecurity. net/docs/aslr. txt (2003).

[8] Mark Dowd, John McDonald, and Justin Schuh. The art of software secu-
rity assessment: Identifying and preventing software vulnerabilities. Pear-
son Education, 2006.

[9] Nicholas Nethercote and Julian Seward. “Valgrind: a framework for heavy-
weight dynamic binary instrumentation”. In: ACM Sigplan notices 42.6
(2007), pp. 89–100.

[10] Konstantin Serebryany et al. “{AddressSanitizer}: A fast address sanity
checker”. In: 2012 USENIX annual technical conference (USENIX ATC
12). 2012, pp. 309–318.

[11] Tegawendé F. Bissyandé et al. “Popularity, Interoperability, and Impact
of Programming Languages in 100,000 Open Source Projects”. In: 2013
IEEE 37th Annual Computer Software and Applications Conference. 2013,
pp. 303–312. doi: 10.1109/COMPSAC.2013.55.

[12] Henry M Levy. Capability-based computer systems. Digital Press, 2014.

31

[13] Jonathan Woodruff et al. “The CHERI capability model: Revisiting RISC
in an age of risk”. In: ACM SIGARCH Computer Architecture News 42.3
(2014), pp. 457–468.

[14] Abhiram Balasubramanian et al. “System Programming in Rust: Beyond
Safety”. In: Proceedings of the 16th Workshop on Hot Topics in Operat-
ing Systems. HotOS ’17. Whistler, BC, Canada: Association for Comput-
ing Machinery, 2017, pp. 156–161. isbn: 9781450350686. doi: 10.1145/
3102980.3103006. url: https://doi.org/10.1145/3102980.3103006.

[15] Arm. 2019. url: https://www.arm.com/architecture/cpu/morello.

[16] Matt Miller. Trends, challenges and strategic shifts in the software vulnera-
bility mitigation landscape. 2019. url: https://github.com/microsoft/
MSRC- Security- Research/blob/master/presentations/2019_02_

BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%

2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.

pdf.

[17] Robert NMWatson et al. An introduction to CHERI. Tech. rep. University
of Cambridge, Computer Laboratory, 2019.

[18] Richard Grisenthwaite et al. “The ArmMorello Evaluation Platform—Validating
CHERI-based Security in a High-Performance System”. In: IEEE Micro
43.3 (2023), pp. 50–57.

[19] Jessica Clarke et al. Robert N. M. Watson Graeme Barnes. Arm Morello
Programme: Architectural security goals and known limitations. Tech. rep.
University of Cambridge, Computer Laboratory, 2023.

[20] Jonathan Woodruff et al. Robert N. M. Watson Peter G. Neumann. Ca-
pability Hardware Enhanced RISC Instructions: CHERI Instruction Set
Architecture (Version 9). Tech. rep. University of Cambridge, Computer
Laboratory, Sept. 2023.

32

